

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	B-Store 1.1.1 documentation

B-Store

	Author:	Kyle M. Douglass

	Contact:	kyle.m.douglass@gmail.com

	organization:	École Polytechnique Fédérale de Lausanne (EPFL)

	revision:	$Revision: 3 $

	date:	2017-01-24

Lightweight database management and analysis tools for single molecule
microscopy.

Using B-Store

	Quick Start
	Installation

	Getting Started

	Build a HDF Datastore with the GUI

	Programming with B-Store

	Getting Help

	B-Store Datastores
	Introduction to B-Store Datastores

	Datasets

	HDF Datastores

	Analysis Routines in B-Store
	Analyzing SMLM Experiments with B-Store

	Processing Localizations and other Data

	Performing Analyses Outside of B-Store

	File I/O
	I/O in B-Store

	Code Examples for Custom Parsers/Readers

	Using B-Store with Other Software
	ImageJ and Fiji

	Frequently Asked Questions
	What is B-Store?

	How do I use B-Store?

	How do I contribute to or extend B-Store?

	Gotcha’s

	What is single molecule localization microscopy (SMLM)?

	What does the “B” stand for?

	Acknowledgments
	Authors

	People

	Organizations

	Software

Programming

	Module Index

Misc.

	Index

	Search Page

 Copyright 2016-2017, Kyle M. Douglass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	B-Store 1.1.1 documentation

Quick Start

	Author:	Kyle M. Douglass

	Contact:	kyle.m.douglass@gmail.com

	organization:	École Polytechnique Fédérale de Lausanne (EPFL)

	revision:	Revision: 3

	date:	2016-11-06

	abstract:	This quick start guide shows how to get up and running with B-Store
as quickly as possible.

Table of Contents

	Quick Start
	Installation
	Anaconda

	Installation from Source

	Getting Started
	Background

	Jupyter Notebook Examples

	B-Store Test Datasets

	Workflow Summary

	Build a HDF Datastore with the GUI
	Misc. Build Options

	Programming with B-Store
	Parsing Files to assign Dataset IDs

	Building a Datastore

	Batch Analysis from a B-Store Database

	Getting Help

Installation

Anaconda

Installation is most easily performed using the Anaconda package
manager. Download Anaconda for Python 3 [https://www.continuum.io/downloads] (or Miniconda) and run the
following commands in the Anaconda shell:

conda update conda
conda config --append channels soft-matter
conda create -n bstore -c kmdouglass bstore

The above commands add a custom channel to the package manager
(soft-matter) and give it lower priority over the default
channel. Then, a new conda environment named bstore is created and the
bstore package is installed from the kmdouglass channel.

If you would like to use Jupyter Notebooks–which aren’t required–,
then be sure to run these commands after installing B-Store:

conda install jupyter nb_conda

Every time you want to run bstore, ensure that you are working in the
bstore environment with

activate bstore

on Windows and

source activate bstore

on Linux and Mac.

Installation from Source

Alternatively, the source code for B-Store may be cloned from
https://github.com/kmdouglass/bstore/. A list of dependencies may be
found inside the requirements.txt file inside the repository.

The master branch [https://github.com/kmdouglass/bstore] contains code that has been more thoroughly
tested than any other branch. The development branch [https://github.com/kmdouglass/bstore/tree/development] contains the
version of the code with the latest features but is more likely to
suffer from bugs.

Getting Started

Background

The B-Store workflow is divided between these two tasks:

	Sort and place all the files from a single molecule localization
microscopy (SMLM) acquisition into a single file known as a
Datastore.

	Automatically access this datastore for batch analyses.

B-Store uses popular scientific Python libraries for working with SMLM
data. Most notably, it uses Pandas DataFrames [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html] for working with
tabulated localization data and the standard json module [https://docs.python.org/3/library/json.html] for
handling metadata. Images are treated as NumPy arrays [http://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html] whose image
metadata can be read from tiff tags (OME-XML and Micro-Manager
metadata are currently supported). Reading and writing from/to HDF
files is performed with h5py [http://www.h5py.org/] (though Pandas uses PyTables [http://www.pytables.org/] for a
few operations).

What all this means is that if you can’t do something with B-Store,
chances are you can implement a custom solution using another Python
library.

Jupyter Notebook Examples

If you want to learn more after working through the quick-start guide,
then you can find examples inside the Jupyter Notebooks at the
B-Store GitHub repository [https://github.com/kmdouglass/bstore/tree/master/examples].

Jupyter Notebooks [http://jupyter.org/] are a great way to interactively work with
B-Store when writing code and are very common in the scientific Python
community. They are free, powerful, and provide a convenient way to
document your work and share it with others. Alternatively, you may
use any other Python interpreter to work with B-Store functions.

B-Store Test Datasets

The B-Store test files repository [https://github.com/kmdouglass/bstore_test_files] contains a number of datasets for
B-Store’s unit tests. These datasets may also be used to try out the
code in the examples [https://github.com/kmdouglass/bstore/tree/master/examples] or in this guide.

Workflow Summary

B-Store is a collection of tools for working with SMLM data. You may
interact with these tools in two different ways:

	by using the GUI, and

	by writing Python code

Once you have a set of HDF files, you may open them in any software
package or language that supports HDF, such as MATLAB [https://ch.mathworks.com/products/matlab/?requestedDomain=www.mathworks.com].

Build a HDF Datastore with the GUI

To start the GUI, navigate to the console window (or Anaconda
prompt). If you installed B-Store from Anaconda, be sure to activate
the bstore environment using whatever name you chose when creating
it:

source activate bstore

If you’re on Windows, don’t use the word source.

Once activated, simply run the program by typing:

bstore

In the window that appears, select File > New HDF
Datastore.... The following new dialog will appear:

[image: _images/gui_screenshot_1.png]
First, choose the directory where the raw data files and
subdirectories are located. We will use the test files for the
SimpleParser [https://github.com/kmdouglass/bstore_test_files/tree/master/parsers_test_files/SimpleParser] for this example. Please note that this directory and
all of its subdirectories will be searched for files ending in the
suffix.filename_extension pattern specified in the next field.

Next, select what types of datasets should be included in the
datastore. For this example, check Localizations, LocMetadata,
and WidefieldImage and uncheck the rest. Set the filename
extension of Localizations, LocMetadata, and WidefieldImage to
.csv, .txt, and .tif, respectively. This will tell the
build routine what files correspond to which types of datasets.

If your files have a special identifier in their filename, like
locs for localizations, you can enter search patterns like
locs*.csv. The asterik (*) will act as a wildcard such that
files like cells_locs_2.csv or Cos7_alexa647_locs.csv would be
found during the file search.

Leave the parser set to SimpleParser. A parser converts a filename
into a set of DatasetIDs that will uniquely identify it inside the
Datastore.

After this, leave the Misc. options as they are. This box allows you
to manually specify options for reading the raw data files. ‘sep’ for
example is the separator between columns in a .csv file. If you have a
tab-separated file, change ‘,’ to ‘t’ (t is the tab
character). Change ‘readTiffTags’ from False to True if you have
Micro-Manager or OME-XML metadata in your tif image files. Please note
that this may fail if the metadata does not match the filename like,
for example, what would happen if someone renamed the file.

Finally, use the Browse dialog to select the name and location of the
HDF datastore file in the top-most field.

The window should now look like this:

[image: _images/gui_screenshot_2.png]
Click the Build button and when it completes, you should have a
nice, new HDF Datastore with your data files structured safely inside
it.

Misc. Build Options

The misc. build options, like sep and readTiffTags, are passed to
each Dataset’s method for reading data from files. They are specified
in the same notation as Python dictionaries [https://docs.python.org/3/tutorial/datastructures.html#dictionaries] except they omit the
curly braces. Each one is optional, so you need not specify any of
them.

The name of each option must be surrounded in single quotation
marks. The value for each option is a Python datatype and is separated
from the option’s name by colon. All option/value pairs are separated
by commas. True and False are case-sensitive. Strings are also
surrounded by single quotes.

The current list of options is:

	sep - The column separator in the raw text csv files. Common
values include commas ‘,’ and tabs ‘\t’.

	readTiffTags - Determines whether tif image metadata should be
read and recorded in the HDF datastore. Accepts either True or
False. Note that this may fail to read the tif images if the
filename does not match the metadata.

	For Pythonistas: The evaluation of the string inside this Entry is

	performed with ast.literal_eval() [https://docs.python.org/3/library/ast.html#ast.literal_eval]. It is a secure method, unlike
eval(), but can only evaluate basic Python datatypes.

Programming with B-Store

B-Store also has an API which allows you to write scripts and Python
code to integrate B-Store into your custom workflows.

Parsing Files to assign Dataset IDs

A B-Store Datastore is a storage container for things like sets of
localizations, widefield images, and acquisition metadata. Each
dataset in the datastore is given a unique ID. A parser reads your
data from files and gives it a meaningful set of datastore IDs. For
example, if you have localizations stored in a comma-separated text
file named HeLaL_Control_1.csv and you use the built-in
SimpleParser [http://b-store.readthedocs.io/en/latest/bstore.html#bstore.parsers.SimpleParser], then your dataset will have the following ID’s:

	prefix - ‘HeLaL_Control’

	acqID - 1

You can follow along by entering the following code into the Python
interpreter of your choice and using the SimpleParser test files [https://github.com/kmdouglass/bstore_test_files/tree/master/parsers_test_files/SimpleParser].:

>>> import bstore.parsers as parsers
>>> sp = parsers.SimpleParser()
>>> sp.parseFilename('HeLaL_Control_1.csv', 'Localizations')
>>> sp.dataset.datasetIDs
{'acqID': 1, 'prefix': 'HeLaL_Control_1'}

Here, Localizations refers to a specific dataset type used by
B-Store to read and write localization data.

B-Store comes with two built-in parsers: SimpleParser [http://b-store.readthedocs.io/en/latest/bstore.html#bstore.parsers.SimpleParser] and
PositionParser [http://b-store.readthedocs.io/en/latest/bstore.html#bstore.parsers.PositionParser]. The SimpleParser can read files that follow the
format prefix_acqID.(filename extension). The very last item of
the filename is separated from the rest by an underscore and is always
assumed to be an integer. The first part of the filename is a
descriptive name given to the dataset.

The PositionParser is slightly more complicated, but gives you greater
flexibility over how your filenames are read. It assumes that each
dataset ID is separated by the same character(s), such as _ or
-. You then specify the integer position (starting from zero!) that
each ID is found in.

For example, say you have a filename like
HeLa_Data_3_2016-05-12.csv. You want HeLa to be the prefix,
Data to be ignored (not used to assign an ID), 3 to be the
acquisition ID number, and 2016-05-12 to be the date. These
correspond to positions 0, 1, 2, and 3 in the filename, respectively,
and the separator is an underscore (_). You would initialize the
PositionParser like this:

>>> pp = parsers.PositionParser(positionIDs = {
>>> 0 : 'prefix', 2 : 'acqID', 3 : 'dateID'})

Changing the separator of ‘positions’ is also easy: simply specify a
sep parameter to the PositionParser’s constructor. We can change the
seperator to hyphen underscore (-_) like this:

>>> pp = parsers.PositionParser(
>>>> positionIDs = {
>>> 0 : 'prefix', 2 : 'acqID', 3 : 'dateID'},
>>> sep = '-_')

If you require a customized parser to assign ID’s, the Jupyter
Notebook tutorial [https://github.com/kmdouglass/bstore/blob/master/examples/Tutorial%203%20-%20Writing%20custom%20parsers.ipynb] on writing custom parsers is a good place to
look.

Building a Datastore

You will typically not need to work directly with a parser. Instead,
the B-Store datastore will use a specified parser to automatically
read your files, assign the proper ID’s, and then insert the data into
the database.

Let’s say you have data from an experiment that can be parsed using
the SimpleParser. (Test data for this example may be found at
https://github.com/kmdouglass/bstore_test_files/tree/master/parsers_test_files/SimpleParser
.) First, we setup the parser and choose the directory containing
files and subdirectories of acquisition data.:

>>> from bstore import database, parsers
>>> from pathlib import Path
>>> dataDirectory = Path('bstore_test_files/parsers_test_files/SimpleParser')
>>> parser = parsers.SimpleParser()

Next, we create a name for the HDF file that a HDFDatastore points
to. The HDFDatastore class will be used to interact with and create
B-Store databases.:

>>> dsName = 'myFirstDatastore.h5'

After this, we tell B-Store what types of files it should know how to
process:

>>> import bstore.config as cfg
>>> cfg.__Registered_DatasetTypes__ = [
 'Localizations', 'LocMetadata', 'WidefieldImage']

Localizations, LocMetadata, and WidefieldImage are
built-in dataset types. Telling B-Store what types of files to look
for helps prevent it from mistakenly thinking a random file that
accidentally entered the directory tree contains SMLM data.

Finally, we create the database by sending the parser, the parent
directory of the data files, and a dictionary telling the parser how
to find localization files to the build method of myDS. Note that
myDS must be created inside a with...as... block to ensure the file
is properly opened and closed. The put() and build() methods of
HDFDatastore both require the use of with...as... blocks; all other
methods do not.:

>>> with database.HDFDatastore(dsName) as myDS:
>>> myDS.build(sp, dataDirectory, {'Localizations' : '.csv',
 'LocMetadata' : '.txt',
 'WidefieldImage' : '.tif'})
6 files were successfully parsed.

This creates a file named myFirstDatabase.h5 that contains the 6
datasets contained in the raw data. (If you want to investigate the
contents of the HDF file, we recommend the HDFView utility [https://www.hdfgroup.org/HDF5/Tutor/hdfview.html].)

To specify exactly how data is read from your raw files, please see
Tutorial 4 [https://github.com/kmdouglass/bstore/blob/master/examples/Tutorial%204%20-%20Writing%20custom%20readers.ipynb] in the examples. This will teach you how to user Readers
to read data in custom file types into Python and subsequently place
them inside the HDFDatastore.

Batch Analysis from a B-Store Database

Another great utility of the B-Store database is that it enables batch
analyses of experiments containing a large number of acquisitions
containing related but different files.

As an example, let’s say you want to extract all the localization
files inside the database we just created and filter out localizations
with precisions that are greater than 15 nm and loglikelihoods that
are greater than 250. We do this by first building an analysis
pipeline containing processors to apply in sequence to the data.:

>>> from bstore import batch, processors
>>> uncertaintyFilter = processors.Filter('uncertainty', '<', 15)
>>> llhFilter = processors.Filter('loglikelihood', '<=', 250)
>>> pipeline = [uncertaintyFilter, llhFilter]

Next, use an HDFBatchProcessor to access the database, pull out
all localization files, and apply the filters. The results are saved
as .csv files for later use and analysis.:

>>> bp = batch.HDFBatchProcessor(dsName, pipeline)
>>> bp.go()
Output directory does not exist. Creating it...
Created folder /home/douglass/src/processed_data

Inside each of the resulting subfolders you will see a .csv file
containing the filterd localization data. A more complete tutorial may
be found at
https://github.com/kmdouglass/bstore/blob/master/examples/Tutorial%202%20-%20Introduction%20to%20batch%20processing.ipynb .

Getting Help

If you have any questions, feel free to post them to the Google Groups
discussion board: https://groups.google.com/forum/#!forum/b-store

Bug reports may made on the GitHub issue tracker:
https://github.com/kmdouglass/bstore/issues

 Copyright 2016-2017, Kyle M. Douglass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	B-Store 1.1.1 documentation

B-Store Datastores

	Author:	Kyle M. Douglass

	Contact:	kyle.m.douglass@gmail.com

	organization:	École Polytechnique Fédérale de Lausanne (EPFL)

	revision:	$Revision: 1 $

	date:	2017-01-24

	abstract:	The logic behind B-Store datastores is presented in this
document. The HDF file type is briefly explained, followed by the
organization of data within the database.

Table of Contents

	B-Store Datastores
	Introduction to B-Store Datastores

	Datasets
	Dataset IDs

	Hierarchy of Dataset IDs

	The Role of Parsers in Datastores

	The Role of Readers in Datastores

	HDF Datastores
	HDFView

	Organization within an HDF datastore
	Example of a full HDFDatastore key

Introduction to B-Store Datastores

A single high-throughput SMLM experiment can generate hundreds or even
thousands of different files containing different types of
data. Analyzing this data requires that the files are sorted and
organized in a well-structured way that is understandable by both
humans and machines. A B-Store datastore fulfills this role as a
structured container for heterogeneous SMLM data.

In basic terms, a B-Store datastore is a collection of individual
datasets. Each dataset possesses identifiers that uniquely identify
it within the datastore. A dataset also provides a container for the
actual experimental data that it is holding, such as localizations or
widefield images.

Datasets

A Dataset [http://b-store.readthedocs.io/en/latest/bstore.html#bstore.database.Dataset] is a single, generalized dataset that can be stored in a
B-Store datastore. It is “general” in the sense that it can represent
one of a few different types of data (e.g. localizations, metadata, or
widefield images). A specific type of dataset is called a
DatasetType. A DatasetType knows what readers it may use to read raw
input files from the disk and how to get and put data of its own type
from and into a datastore. Unlike the Datastore, which sorts and
organizes Datasets, the DatasetType encapsulates all the knowledge
about data input and output.

There are currently five dataset types (examples of their raw input
are in paranetheses):

	Localizations (tabulated localization data in raw text, csv format)

	LocMetadata (information about how the localizations were generated
in JSON format)

	WidefieldImage (gray scale images; contains OME-XML metadata and
Micro-Manager metadata)

	FiducialTracks (localizations belonging to individual fiducials in
csv format)

	AverageFiducial (the average drift trajectory from many fiducials)

If you require a raw input type or a general DatasetType that is not
listed here, B-Store can be easily extended to support it. Please let
us know on the forum [https://groups.google.com/forum/#!forum/b-store].

Dataset IDs

A dataset is uniquely defined by the following fields (the first
four–prefix, acqID, datasetType, attributeOf–are required).

	prefix

	A descriptive name given to the dataset.

	acqID

	An integer that specifies the acquisition number of the dataset.

	datasetType

	A string. Must be one of the types listed above. The a type must
be in the list __Registered_DatasetTypes__ in config.py [https://github.com/kmdouglass/bstore/blob/master/bstore/config.py] to be
used.

	attributeOf

	A string. Must be one of the dataset types listed above. This is
the name of a type of dataset that this one describes.

	channelID

	(optional) A string that specifies the fluorescence channel that
the dataset was acquired in.

	dateID

	(optional) A string in the format YYYY-MM-DD. This is for
identifying the same field of view taken on different days.

	posID

	(optional) A one or two-element tuple of integers specifying the
position of the field of view of the dataset.

	sliceID

	(optional) An integer identifying the the axial slice of the
dataset.

	replicateID

	(optional) An integer identifying a replicate or biological
repeat. This is used when a dataset has the same IDs as another
but comes from an independent sample.

Hierarchy of Dataset IDs

All datasets with the same prefix are organized into the same
acquisition group. Within an acquisition group, datasets are
specified according to their acqID.

For example, let’s say we take three widefield images of Cos7 cells
from the same coverslip during the same experiment. In the datastore,
each image will have the same prefix, such as ‘Cos7’. The individual
images however will have three different acqID’s. (Most likely they
will be 1, 2, and 3, but they need not start at 1 or be sequential.)

If two datasets have the same prefix and acqID but different
datasetType’s, then they will be understood to have come from the same
field of view. This allows widefield images to be grouped with their
corresponding localizations within the database. As an example, we
might have two datasets in our datastore where both have ‘HeLa’ as a
prefix and 1 as the acqID, but one has ‘Localizations’ as its
datasetType and the other ‘WidefieldImage’.

Finally, the optional identifiers can further divide datasets that
have the same prefix, acqID, and datasetTypes.

A diagram that explains this hierarchy is seen below. On top, you have
your raw data files as inputs to a parser, which both assigns dataset
IDs based on the files’ filename. A Reader converts the data into a
format suitable for insertion into the database. A single acquisition
group is identified by a prefix. Within this group, each dataset
has a unique acqID and datasetType to set it apart from other
datasets within the same group. Finally, the other optional IDs give
you more control over how the data is organized within the group.

[image: _images/dataset_logic.png]

The Role of Parsers in Datastores

As mentioned above, a B-Store parser is an object that assigns dataset
IDs to a dataset based on the filename of the file containing the
data.

Since different labs often have very different ways to generate their
data, parsers were designed to be very flexible objects. The only
requirement of a parser is that it implements the functions described
by the Parser metaclass [http://b-store.readthedocs.io/en/latest/bstore.html#bstore.parsers.Parser]; these functions specify the kinds of
outputs a Parser must provide. The types of inputs, however, are not
specified. This means that you can write a parser to convert any type
of data that you would like into a dataset (as long as it fits within
one of the datasetTypes). Furthermore, exactly how dataset IDs are
assigned remains up to you. If you want your parser to label every
single dataset with a prefix of ‘Bob’ then you can do that, though
obviously the utility of such a feature will be in question.

This flexibility comes at a cost, however. If the built-in parsers do
not work for your data, then it will be necessary to write your
own. An example of how to do this is provided as a Jupyter notebook
example [https://github.com/kmdouglass/bstore/blob/master/examples/Tutorial%203%20-%20Writing%20custom%20parsers.ipynb].

The Role of Readers in Datastores

Readers do the actual work of reading the data inside a file into
memory. When building a Datastore, a different reader may be specified
for each dataset to allow B-Store to read data from a large range of
file formats. Generic readers like CSVReader and JSONReader are
provided for reading from generic file formats.

HDF Datastores

The HDFDatastore [http://b-store.readthedocs.io/en/latest/bstore.html#bstore.database.HDFDatastore] class allows for the creation of a datastore
inside a HDF [https://www.hdfgroup.org/] container. HDF is a high-performance file type used in
scientific and numerical computing. It is considered a standard file
type in scientific circles and is widely supported by many programming
environments. One advantage of HDF containers is that you are not
required to use B-Store code to access the data in a B-Store
datastore. Any software that can read or modify HDF files will do.

HDFDatastore objects support many features of Python sets, like list
comprehensions, filtering, and iteration.

HDFView

HDFView [https://www.hdfgroup.org/products/java/hdfview/] is a useful utility for viewing the contents of a HDF
container. It is freely available and recommended for trouble
shooting.

We will use screenshots taken from HDFView to explain how data is
sorted inside a B-Store datastore.

Organization within an HDF datastore

The figure below is a screenshot from HDFView of the B-Store test
database located in test_experiment/test_experiment_db.h5 in the
B-Store test files repository [https://github.com/kmdouglass/bstore_test_files/blob/master/test_experiment/test_experiment_db.h5]. On left side of the window, you can
see a hierarchy of the groups stored inside this database. There are
two acqusition groups with prefixes HeLaL_Control and
HeLaS_Control. Inside the HeLaL_Control group, you can see that
there is one single acquisition (labeled with an acqID of 1).

[image: _images/database_example_1.png]
This group contains three different datasets: localizations
(Localizations_ChannelA647_Pos0), a widefield image
(WidefieldImage_A647_Pos0), and metadata describing how the
localizations were obtained. (The metadata is not directly visible in
this image because it’s stored as attributes of the
Localizations_ChannelA647_Pos0 group.) Each dataset has two optional
identifiers: a channelID of A647 and a posID of 0. The dataset
keys–if they are specified–follow the format
datasetType_channelID_posID_sliceID_dateID_replicateID. Because no
sliceID, dateID, or replicateID is specified, they are absent from the
name of the group.

Date ID’s are specified as strings in the format ‘YYYY-MM-DD’.

Position ID’s support single integer ID’s as one-tuples (0,) and two
integer ID’s as two-tuples (1,4).

Example of a full HDFDatastore key

A HDFDatastore key using all the ID’s possible looks like:

HeLa_Control/HeLa_Control_76/Localizations_ChannelA750_Pos1_Slice5_Date20161211_Replicate5

The dataset IDs matching this key are prefix: HeLaControl,
acqID: 76, datasetType: Localizations, channelID: A750,
posID: 1, sliceID: 5, dateID: 20161211,
replicateID: 5.

If posID was specified with two integers, such as (1,4), it the
corresponding part of the key would look like Pos_001_004.

The dateID only has hyphens between the year, month, and day in
Python; they are removed when writing to the HDF datastore.

As seen in the next figure, the actual localization data is stored as
a table inside the Localizations_ChannelA647_Pos0 group. Metadata is
attached as HDF attributes [https://www.hdfgroup.org/HDF5/doc1.6/UG/13_Attributes.html] of the group; their values are in
JSON [http://www.json.org/] format. Attributes have the same key as the dataset they
belong to; if this dataset does not exist in the HDF file, neither
will the metadata attributes. All attributes start with the string
defined in the variable __HDF_Metadata_Prefix__ in config.py [https://github.com/kmdouglass/bstore/blob/master/bstore/config.py].

[image: _images/database_example_2.png]
This mode of organization was chosen for a few reasons:

	The data is organized in a way that is easily read by both humans
and machines. This means we can understand the organization of the
data without any knowledge of how the datastore was created.

	B-Store dataset IDs can be inferred from the HDF key that points to
the data. Machines can parse the HDF key to extract the dataset
IDs, which is done, for example, when the function
HDFDatastore.query() [http://b-store.readthedocs.io/en/latest/bstore.html#bstore.database.HDFDatastore.query] is executed.

	We take advantage of features provided by the HDF format, such as
attributes and groups.

 Copyright 2016-2017, Kyle M. Douglass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	B-Store 1.1.1 documentation

Analysis Routines in B-Store

	Author:	Kyle M. Douglass

	Contact:	kyle.m.douglass@gmail.com

	organization:	École Polytechnique Fédérale de Lausanne (EPFL)

	status:	Revision: 0

	date:	2016-08-06

	abstract:	A brief overview of performing simple and batch analyses in B-Store
is provided.

Table of Contents

	Analysis Routines in B-Store
	Analyzing SMLM Experiments with B-Store
	Batch Processing

	Analyzing Single Datasets

	Processing Localizations and other Data
	Processors

	Multi-Processors

	Performing Analyses Outside of B-Store

Analyzing SMLM Experiments with B-Store

First and foremost, B-Store is a tool for structuring data from SMLM
experiments. With structured data, analysis of large datasets becomes
easier because we can write programs to automatically take just the
data we want and process it or make reports. The data is always
organized in the same way, so our analysis routines can be easily
adapted when new data arrives.

B-Store provides analysis routines as a secondary feature. Many
software packages exist for analyzing SMLM data, and B-Store is not
intended to replace them. Rather, B-Store provides common processing
routines as a convenience–such as filtering or merging
localizations–and less common processing routines for specialized
analyses performed in the authors’ laboratories.

Batch Processing

B-Store currently provides two batch processors for working with SMLM
data: HDFBatchProcessor [http://b-store.readthedocs.io/en/latest/bstore.html#bstore.batch.HDFBatchProcessor], for extracting data from B-Store HDF
Datastores and processing them, and CSVBatchProcessor [http://b-store.readthedocs.io/en/latest/bstore.html#bstore.batch.CSVBatchProcessor], for applying
the same processing pipeline to .csv files spread across a directory
tree.

The operation of a batch processor is simple: first, it accepts an
analysis pipeline and a datastore or directory that contain at least
one file corresponding to an SMLM dataset. The pipeline is a list of
B-Store processors [http://b-store.readthedocs.io/en/latest/bstore.html#module-bstore.processors] that modify a DataFrame containing
localizations. Each processor is applied to a single dataset
sequentially, starting from the first processor in the list.

Next, the batch processor accumulates a list of all the localization
files in the database. If using the CSVBatchProcessor, it finds all
files ending in the string parameter suffix. For example, if your
localization files end in locResults.csv, you can set suffix =
‘locResults.csv’ and the batch processor will find these files in the
specified folder and all subfolders. If using the
HDFBatchProcessor, you can specify localization files using the
searchString parameter.

Once the list of datasets is built, the batch processor loops over
each dataset, applying the processors in the pipeline one at a time to
the DataFrame. Currently, the output results are written to new .csv
files in a folder specified in the outputDirectory parameter to the
constructor of both batch processors. This feature allows you to
perform analyses with different pipelines on the same database.

For an example of how to perform batch processing in B-Store, see the
Jupyter notebook tutorial [https://github.com/kmdouglass/bstore/blob/master/examples/Tutorial%202%20-%20Introduction%20to%20batch%20processing.ipynb].

Analyzing Single Datasets

Single datasets may be retrieved from a B-Store database for analysis
using the get() method [http://b-store.readthedocs.io/en/latest/bstore.html#bstore.database.Database.get] of the Database class.

Processing Localizations and other Data

Processors

A processor [http://b-store.readthedocs.io/en/latest/bstore.html#module-bstore.processors] is a simple class for processing localization
datasets. Its behavior is controlled by zero or more attributes that
are set in the processor’s constructor. A processor is callable in
that it is used like a function; when doing so, it always accepts a
single Pandas DataFrame as an input.:

>>> import bstore.processors as proc
>>> myFilter = proc.Filter('precision', '<', 15)
>>> filterData = myFilter(df)

In the above example, we create a filter processor called myFilter
whose constructor takes three arguments: the name of column to filter
on, a string specifying the comparison operator (in this case
less-than) and a numeric value. All rows in the ‘precision’ column
will have values less than 15 after this filter is applied.

After creating the processor, you apply it to a Pandas DataFrame by
using it like a function. In the above example, we pass a DataFrame
named df to myFilter and store the processed DataFrame in
filterData.

When creating your own processor, you can achieve this function-like
behavior of a class by specifying the behavior inside the class’s
__call__() method. For more information, see the Python
documentation [https://docs.python.org/3/reference/datamodel.html#object.__call__].

A complete list of processors and their behavior may be found in the
processor [http://b-store.readthedocs.io/en/latest/bstore.html#module-bstore.processors] module index.

Multi-Processors

Multi-processors are similar to processors, except for two points:

	they accept multiple inputs instead of a single DataFrame, and

	they may take user-input and thus may not necessarily be used in
batch processing.

Two examples of multi-processors are AlignToWidefield [http://b-store.readthedocs.io/en/latest/bstore.html#bstore.multiprocessors.AlignToWidefield] and
OverlayClusters [http://b-store.readthedocs.io/en/latest/bstore.html#bstore.multiprocessors.OverlayClusters]. AlignToWidefield determines the global offset
between localizations and a widefield image by using a simple
FFT-based cross-correlation routine.

OverlayClusters is a very useful analysis tool for displaying
clustered localizations on top of a widefield image. This tool may be
used to navigate through different clusters of localizations, manually
filter clusters from the dataset, and to append numeric labels to
clusters for manual segmentation. Generally, AlignToWidefield is
before OverlayClusters.

Performing Analyses Outside of B-Store

B-Store databases use the HDF format and are therefore readable by
many scientific libraries. You may analyze your data in any of these
if the B-Store analysis tools do not suit your purposes.

 Copyright 2016-2017, Kyle M. Douglass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	B-Store 1.1.1 documentation

File I/O

	Author:	Kyle M. Douglass

	Contact:	kyle.m.douglass@gmail.com

	organization:	École Polytechnique Fédérale de Lausanne (EPFL)

	revision:	$Revision: 0 $

	date:	2017-01-24

	abstract:	A brief explanation of file input and output in B-Store.

Table of Contents

	File I/O
	I/O in B-Store
	Overview

	Important Note

	Built-in Parsers

	Built-in Readers

	Code Examples for Custom Parsers/Readers

I/O in B-Store

Overview

B-Store uses two types of objects to read files from the disk that
contain localization microscopy data:

	Parsers

	Readers

A Parser reads the filename of a file and assigns IDs to it that are
used to identify the dataset inside a HDF file. A Reader reads the
actual data contained in the file and converts it to an internal
Python datatype. This datatype serves as an intermediary step before
saving the data to the HDF file.

Readers are convenience tools that allow the same functionality for
reading files to be applied to multiple datasetTypes. For instance,
the Localizations, FiducialTracks, and AverageFiducial
datasetTypes are all internally represented as Pandas
DataFrames. Readers also allow B-Store to be easily extended to new
types of files. The purpose in this is that users can store their
localization microscopy data regardless of the software program that
generated it. All that would be needed would be a new Reader instance
that would know how to interpret the data in the files.

Important Note

Reader functionality was added in version 1.1.0 and is not yet
integrated with all dataset types. This will change in future
versions.

There is also no arbitrary file output from the HDF files as of
version 1.1.0, except for that generated by CSVBatchProcessor [http://b-store.readthedocs.io/en/latest/bstore.html#bstore.batch.CSVBatchProcessor]. This
too should change in upcoming versions.

Built-in Parsers

Two types of Parsers are currently built-in to B-Store:

	SimpleParser [http://b-store.readthedocs.io/en/latest/bstore.html#bstore.parsers.SimpleParser]

	PositionParser [http://b-store.readthedocs.io/en/latest/bstore.html#bstore.parsers.PositionParser]

The SimpleParser interprets files names in the format
PREFIX_ACQID.<file_type> where the prefix and acquisition ID are
separated by an underscore. The PositionParser splits up a filename by
a specified character, e.g. ‘_’, and assigns DatasetIDs based on the
elements of the filename occupying integer positions separated by this
character, starting with 0 at the left-most position.

Built-in Readers

There are currently two Readers built-in to B-Store:

	CSVReader [http://b-store.readthedocs.io/en/latest/bstore.html#bstore.readers.CSVReader]

	JSONReader [http://b-store.readthedocs.io/en/latest/bstore.html#bstore.readers.JSONReader]

These readers use functionality from Pandas [http://pandas.pydata.org/] and read generic .csv
and .json files, respectively. They are highly customizable with
optional parameters provided by Pandas read_csv [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html] and read_json [http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_json.html]
functions. This means that anything you can load with these two
functions, you can load into B-Store.

Code Examples for Custom Parsers/Readers

The following Jupyter notebooks demonstrate how to write custom
Parsers and Readers.

	https://github.com/kmdouglass/bstore/blob/master/examples/Tutorial%203%20-%20Writing%20custom%20parsers.ipynb

	https://github.com/kmdouglass/bstore/blob/master/examples/Tutorial%204%20-%20Writing%20custom%20readers.ipynb

 Copyright 2016-2017, Kyle M. Douglass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	B-Store 1.1.1 documentation

Using B-Store with Other Software

	Author:	Kyle M. Douglass

	Contact:	kyle.m.douglass@gmail.com

	organization:	École Polytechnique Fédérale de Lausanne (EPFL)

	revision:	$Revision: 0 $

	date:	2016-08-11

	abstract:	B-Store uses the HDF file format, which means it may be used with
other software programs for bio-image analysis.

Table of Contents

	Using B-Store with Other Software
	ImageJ and Fiji

B-Store databases use the HDF [https://www.hdfgroup.org/] file format for data storage. This
means that any software package that can read from HDF files can also
read B-Store databases.

ImageJ and Fiji

Widefield images found inside a B-Store database may be opened in
ImageJ and Fiji using the HDF5 Plugin for ImageJ and Fiji [http://lmb.informatik.uni-freiburg.de/resources/opensource/imagej_plugins/hdf5.html]. When
using the GUI loader, use the option individual hyperstacks (custom
layout) with yz as the data set layout argument.

This functionality requires that the image data in the HDF file
possess an attribute called element_size_um that contains three
floating point numbers corresponding to the size of a pixel in z, y,
and x-directions. There are three ways that this attribute may be
created when the database is built:

	By specifying the `HDFDatastore`_ widefieldPixelSize property,
which is a two-element tuple of the x- and y- pixel sizes.

	If widefieldPixelSize is None, the pixel size is extracted from
the Micro-Manager metadata in the field specified by
__MM_PixelSize__ in B-Store’s config.py.

	If Micro-Manager metadata is not present, look for the pixel size
in OME-XML metadata.

	Failing this, the attribute element_size_um is not set.

If the images were not generated by Micro-Manager or a program that
writes OME-XML metadata, simply specify the pixel size in the
widefieldPixelSize attribute described above.

 Copyright 2016-2017, Kyle M. Douglass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	B-Store 1.1.1 documentation

Frequently Asked Questions

	Author:	Kyle M. Douglass

	Contact:	kyle.m.douglass@gmail.com

	organization:	École Polytechnique Fédérale de Lausanne (EPFL)

	revision:	$Revision: 5 $

	date:	2017-01-24

	abstract:	This document answers frequently asked questions regarding B-Store,
a lightweight data management system for single molecule
localization microscopy (SMLM).

Table of Contents

	Frequently Asked Questions
	What is B-Store?
	What problem does B-Store solve?

	What are the design criteria for B-Store?

	What doesn’t B-Store do?

	Why don’t you use OME tools?

	How do I use B-Store?
	Is there a GUI interface?

	Can I still use B-Store if I don’t know Python?

	How do I contribute to or extend B-Store?
	How do I add my custom code to the B-Store project?

	What language is B-Store written in?

	What is the logic of the B-Store datastore?

	What is the logic behind the B-Store code?
	Parsers

	Database

	Readers

	Batch

	Processors

	Multiprocessors

	What testing framework is used by the B-Store developers?

	Gotcha’s
	Spaces in column names

	Widefield images
	Grayscale

	OME-XML

	What is single molecule localization microscopy (SMLM)?

	What does the “B” stand for?

What is B-Store?

B-Store is a lightweight data management and analysis library for
single molecule localization microscopy (SMLM). It serves two primary
roles:

	To structure SMLM data inside a single, high performance
filetype for fast and easy information retrieval and storage.

	To facilitate the analysis of high-throughput SMLM datasets.

What problem does B-Store solve?

High-throughput SMLM experiments can produce hundreds or even
thousands of files containing multiple types of data (images, raw
localizations, acquisition information, etc.). B-Store automatically
sorts and stores this information in a datastore for rapid retrieval
and analysis, removing any need to manually maintain the data
yourself.

What are the design criteria for B-Store?

To realize these roles, B-Store is designed to meet these important
criteria:

	Experimental datasets must be combined into a database-like
structure that is easily readable by both humans and computers.

	Access and processing of data must be fast, regardless of the
size of the dataset.

	Data provenance must be preserved throughout the organization
and analysis pipeline.

	B-Store should not enforce standards that force scientists to
adopt file formats, naming conventions, or software packages
that differ from the ones they already use, except when it is
absolutely necessary to achieve its roles.

	B-Store should be extensible to adapt to the changing needs of
scientists using SMLM.

	Above all else, B-Store should make it easy to organize and
document data and analysis pipelines to improve the
reproducibility of SMLM experiments.

Of course, the changing needs of scientists means that B-Store will
always be evolving to meet these criteria.

What doesn’t B-Store do?

B-Store is efficient and fast because its scope is limited to SMLM
data organization and analysis. In particular, B-Store does not:

	Calculate localizations from raw images.

	Control microscopy hardware.

	Provide database-like storage for core facilities.

	Generate any data or results for you. (Sorry.)

Why don’t you use OME tools?

The Open Microscopy Environment [https://www.openmicroscopy.org/site] (OME) is a wonderful set of
software tools for working with bio-image data. In fact, the OME
inspired this project in that B-Store emulates the OME model [https://www.openmicroscopy.org/site/support/ome-model/ome-xml/#migrating-or-sharing-data-with-ome-xml] for
archiving data, metadata, and analyses together in one abstract unit
to improve reproducibility and communication of scientific results in
SMLM.

In spite of this, we chose to develop tools independent of the OME for
a few reasons. The OME was primarily designed for working with image
data. SMLM data on the other hand is more heterogeneous than image
data (localizations, drift correction, widefield images,
etc.). Reworking parts of the OME to accomodate SMLM would therefore
have been a significant undertaking on our part.

In addition, the OME database tool, OMERO, requires time for set up
and maintenance. Many small labs doing SMLM may not be willing to
invest the resources required for this. In contrast, B-Store is
intended to be lightweight and require as little time for setup and
maintenance as possible.

Some researchers in the SMLM community have expressed interest in
extending the OME to SMLM, and we gladly welcome this effort. In the
meanwhile, B-Store intends to satisfy the need for structured SMLM
data.

How do I use B-Store?

B-Store is currently comprised of a set of functions, classes, and
interfaces that are written in Python. You therefore can make B-Store
datastores in any environment that runs Python code, including:

	The B-Store GUI

	Jupyter Notebooks [http://jupyter.org/]

	IPython [https://ipython.org/]

	.py scripts

Once inside the datastore, the data may be accessed by any software
that can read the HDF file format, including

	B-Store

	Python [http://www.h5py.org/]

	MATLAB [https://ch.mathworks.com/help/matlab/hdf5-files.html]

	ImageJ/Fiji [http://lmb.informatik.uni-freiburg.de/resources/opensource/imagej_plugins/hdf5.html]

	R [http://bioconductor.org/packages/2.11/bioc/html/rhdf5.html]

	C/C++ [https://support.hdfgroup.org/HDF5/examples/intro.html#c]

	Java [https://support.hdfgroup.org/HDF5/examples/intro.html#java]

and more.

Is there a GUI interface?

There is currently a lightweight GUI interface for building HDF
datastores.

Can I still use B-Store if I don’t know Python?

If you don’t know Python, you can still use B-Store in a number of
ways.

The easiest way is to use the GUI. After that, try exploring the
Jupyter notebooks in the examples folder [https://github.com/kmdouglass/bstore/tree/master/examples]. Find an
example that does what you want, then modify the relevant parts, such
as file names. Then, simply run the notebook.

You may also wish to use B-Store’s datastore system, but not its
analysis tools. In this case, you can use the notebooks to build your
database, but access and analyze the data from the programming
language of your choice, such as MATLAB. B-Store currently provides
functionality for a datastore stored in an HDF file.

A third option is to call the Python code from within another
language. Information for doing this in MATLAB may be found at the
following link, though we have not yet tested this ourselves:
http://www.mathworks.com/help/matlab/call-python-libraries.html

Of course, these approaches will only take you so far. Many parts of
B-Store are meant to be customized to suit each scientist’s needs, and
these customizations are most easily implemented in
Python. Regardless, the largest amount of customization you will want
to do will likely be to write a Parser. A Parser converts raw
acquisition and localization data into a format that can pass through
the datastore interface. If your programming language can call Python
and the HDFDatastore object, then you can write the parser in the
language of your choice and then pass the parsed data through these
interfaces to build your database.

How do I contribute to or extend B-Store?

B-Store was designed to be extensible. If you have an idea, code, or
even a comment about how to improve it, we would love to hear about
it!

A great place to start contributing is by posting questions or
comments to the B-Store mailing list [https://groups.google.com/forum/#!forum/b-store].

Common extensions you would want to do are to write plugins that
extend the Parser, Processor, or Reader classes, or write your own
DatasetTypes. If you add your custom Python files to the
~/.bstore/bsplugins directory (%USERPROFILE%\.bstore\bsplugins
on Windows), B-Store will know to search this directory for imports.

A custom Parser that we use in our own lab may be found here:
https://github.com/kmdouglass/bsplugins-leb

How do I add my custom code to the B-Store project?

If you want to modify the B-Store code, you can start by forking the
repository [https://github.com/kmdouglass/bstore] on GitHub. According to GitHub’s documentation [https://help.github.com/articles/fork-a-repo/],

A fork is a copy of a repository. Forking a repository allows you
to freely experiment with changes without affecting the original
project.

After forking the repository, go ahead and make your changes, write
some tests to be sure that your changes work like you expect them to,
and then issue a pull request [https://help.github.com/articles/using-pull-requests/]. The B-Store developers will review
your suggested changes and, if they like them, will incorporate them
into the B-Store project. With your permission your name will be added
to the authors list [http://b-store.readthedocs.io/en/latest/acknowledgments.html#authors].

For testing, B-Store uses the nose package. Type nosetests in the
B-Store project root to run them. Test files are in the test files
repository already mentioned [https://github.com/kmdouglass/bstore_test_files]. To run these successfully, set the
__Path_To_Test_Data__ variable in bstore/config.py.

What language is B-Store written in?

B-Store is written in the Python programming language (version 3) and
relies heavily on a datatype known as a DataFrame. DataFrames and
their functionality are provided by the Pandas library and in many
ways work like Excel spreadsheets but are much, much faster. Pandas is
highly optimized and used extensively for both normal and big data
analytics at companies and research institutions across the globe.

In addition to Pandas, B-Store implements features provided by
numerous scientific, open source Python libraries like numpy and
matplotlib. If you can’t do something in B-Store, you can likely still
use these libraries to achieve what you want.

What is the logic of the B-Store datastore?

B-Store is designed to search specified directories on your computer
for files associated with an SMLM experiment, such as those containing
raw localizations and widefield images. These files are passed through
a Parser, which converts them into a format suitable for insertion
into a database. It does this by ensuring that the files satisfy the
requirements of an interface known as a DatasetID. Data that
implements this interface may pass into and out of the database; data
that does not implement the interface cannot. You can think of the
interface like a guard post at a government research facility. Only
people with an ID badge for that facility (the interface) may
enter. In principle, B-Store does not care about the data itself or
the details of the database (HDF, SQL, etc.). At the moment, however,
B-Store only supports databases contained in HDF files.

At the time this README file was written, the DatasetID of
HDFDatastore consisted of the following properties:

	acquisition ID - integer identifying a specific acquisition

	prefix - a descriptive name for the acquisition, such as the
cell type or condition

	datasetType - The type of data contained in the atom

	attribute of - For types that describe others, like
localization metadata

	channel ID - the wavelength being imaged

	date ID - the date on which an acquisition was taken

	position ID - A single integer or integer pair identifying the
position on the sample

	slice ID - An integer identifying the axial slice acquired

	replicate ID - An integer identifying the biological replicate
that corresponds to this dataset.

The first four properties in bold are required; the last properties
are optional.

There are three important advantages to enforcing an interface such as
this.

	The computer will always know what kind of data it is working
with and how to organize it.

	The format of the data that you generate in your experiments
can be made independent of the datastore, so you can do
whatever you want to it. The Parser ensures that it is in the
right format only at the point of datastore insertion.

	The nature of the datastore and the types of data it can handle
can grow and change in the future with minimal difficulty.

The logic of this interface is described graphically below. The raw
data on top pass through the Parser and Readers objects and then into
the datastore, where they are organized into acquisition groups. Each
group is identified by a name called a prefix. Within the group, a
dataset possesses an acquisition ID and a dataset type. An acqusition
group is a set of datasets that were acquired during an experiment
with the same prefix. A single dataset may optionally contain multiple
fields of view (positions), wavelengths (channels), or axial
slices. The database is therefore a collection of hierarchically
arranged datasets, each belonging to a different acquisition group,
and each uniquely identified by the conditions of the acquisition.

[image: _images/dataset_logic.png]

What is the logic behind the B-Store code?

The B-Store code base is divided into sixe separate modules:

	parsers

	database

	readers

	batch

	processors

	multiprocessors

In addition, functionality for each dataset type is specified in its
own file in /bstore/datasetTypes/.

The first three modules, parsers, database, and readers, contain all
the code for organizing SMLM datasets into a datastore. The last three
modules, batch, processors, and multiprocessors, are primarily used
for extracting data from B-Store databases and performing
(semi-)automated analyses.

Parsers

A parser reads files from a SMLM acquisition and produces a
Dataset–an object that can be inserted into a B-Store datastore. This
object will have mandatory and possibly optional fields for uniquely
identifying the data within the datastore.

Database

The database module contains code for building datastores from raw
data. It relies on a parser for translating files into a format that
it knows how to work with.

Readers

Readers understand how to read data from files generated by different
sources, such as ThunderSTORM or RapidSTORM, and convert them into a
common and internal Python data type. This internal representation is
temporary and is used to next write this data to HDF.

Readers were introduced in version 1.1.0 and lay the groundwork for a
more customizable interface in later versions.

Batch

The batch module contains routines for performing automated analyses
with B-Store databases. It allows you to build simple analysis
pipelines for extracting just the data you need from the datastore.

Processors

Processors are objects that take just a few parameters. When called,
they accept a single argument (usually a Pandas DataFrame) as an input
and produce an object of the same datatype as an output with its data
having been modified.

Examples of processors include common SMLM analysis steps such as
Filter, Merge, and Cluster.

Multiprocessors

Multiprocessors are similar to processors. They differ in that they
take multiple inputs to produce an output. One multiprocessor is
called OverlayClusters, which overlays clusters of localizations onto
a widefield image for visual inspection and anotation of cluster
analyses.

What testing framework is used by the B-Store developers?

Unit tests for B-Store are written as functions with utilities
provided by Python’s nose [http://nose.readthedocs.io/en/latest/] package. Each module in B-Store has its
own .py file containing these tests. They are stored in the
bstore/tests [https://github.com/kmdouglass/bstore/tree/master/bstore/tests] and bstore/datasetTypes/tests [https://github.com/kmdouglass/bstore/tree/master/bstore/datasetTypes] folders in the
B-Store root directory.

If you contribute to B-Store, we ask that you write unit tests for
your code so that the developers can better understand what it’s
supposed to do before merging it into the main project.

Gotcha’s

Spaces in column names

The library that B-Store uses to write to HDF files (PyTables [http://www.pytables.org/])
often has problems with spaces inside the names of DataFrame
columns. We therefore recommend not using spaces. A workaround to this
is to use the ConvertHeader [http://b-store.readthedocs.io/en/latest/bstore.html#bstore.processors.ConvertHeader] processor to change column names during
insertion into and retrieval from the database.

Widefield images

Grayscale

Widefield images are assumed to be grayscale. Unexpected behavior may
result when attempting to place a color image into the database.

OME-XML

When reading metadata to determine the element_size_um attribute
of the HDF image_data, the OME-XML metadata tags PhysicalSizeX
and PhysicalSizeY will only be used if the corresponding units are
in microns. This means the PhysicalSizeXUnit and
PhysicalSizeYUnit must match the byte string \xc2\xb5m, which
is UTF-8 for the Greek letter “mu”, followed by the roman letter “m”.

If Micro-Manager (MM) metadata with pixel size information is present,
then the OME-XML data will be ignored in favor of the MM metadata.

See the page on using B-Store in other software packages [http://b-store.readthedocs.io/en/development/other_programs.html] for more
information.

What is single molecule localization microscopy (SMLM)?

SMLM is a suite of super-resolution fluorescence microscopy techniques
for imaging microscopic structures (like cells and organelles) with
resolutions below the diffraction limit of light. A number of SMLM
techniques exist, such as fPALM, PALM, STORM, and PAINT. In these
microscopies, fluorescent molecules are made to “blink” on and off. A
final image or dataset is computed by recording the positions of every
blink for a period of time and adding together all the positions in
the end.

SMLM is a powerful tool for helping scientists understand biology and
chemistry at nanometer length scales. It is particularly well-suited
for structural biology and for tracking single fluorescent molecules
in time.

A fantastic movie explaining how this works using the blinking lights
of the Eiffel tower was created by Ricardo Henriques. You can watch it
here: https://www.youtube.com/watch?v=RE70GuMCzww

What does the “B” stand for?

“Blink”

 Copyright 2016-2017, Kyle M. Douglass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	B-Store 1.1.1 documentation

Acknowledgments

	Author:	Kyle M. Douglass

	Contact:	kyle.m.douglass@gmail.com

	organization:	École Polytechnique Fédérale de Lausanne (EPFL)

	revision:	$Revision: 2 $

	date:	2016-11-06

	abstract:	This is a list of people and organizations that made B-Store
possible. Many, many thanks to everyone, even those who may not
appear on this list, for their contributions great and small.

Table of Contents

	Acknowledgments
	Authors

	People

	Organizations

	Software

Authors

	Kyle M. Douglass [http://kmdouglass.github.io]

	Niklas Berliner

	Marcel Stefko

People

	Suliana Manley [http://leb.epfl.ch]

	Christian Sieben

	Aleksandra Vancevska

Organizations

	SystemsX.ch [http://www.systemsx.ch/]

Software

	Python [https://www.python.org/community/]

	Anaconda [https://www.continuum.io/why-anaconda]

	Pandas [http://pandas.pydata.org/]

	Jupyter [http://jupyter.org/]

	trackpy [http://soft-matter.github.io/trackpy/v0.3.0/]

	NumPy [http://www.numpy.org/]

	SciPy [https://www.scipy.org/]

	matplotlib [http://matplotlib.org/]

	h5py [http://www.h5py.org/]

	scikit-learn [http://scikit-learn.org/stable/]

	tifffile [https://pypi.python.org/pypi/tifffile]

	filelock [https://pypi.python.org/pypi/filelock/]

 Copyright 2016-2017, Kyle M. Douglass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	B-Store 1.1.1 documentation

 Python Module Index

 b

 			

 		
 b	

 	[image: -]
 	
 bstore	

 	
 	
 bstore.config	

 Copyright 2016-2017, Kyle M. Douglass.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	B-Store 1.1.1 documentation

Index

 B

B

 	

 	bstore (module)

 	

 	bstore.config (module)

 Copyright 2016-2017, Kyle M. Douglass.
 Created using Sphinx 1.3.5.

 _static/down-pressed.png

_static/down.png

bstore.html

 Navigation

 		
 index

 		
 modules |

 		B-Store 1.1.1 documentation »

bstore package

Submodules

bstore.batch module

bstore.config module

bstore.database module

bstore.multiprocessors module

bstore.parsers module

bstore.processors module

Module contents

 © Copyright 2016-2017, Kyle M. Douglass.
 Created using Sphinx 1.3.5.

_static/up.png

_static/up-pressed.png

_images/database_example_1.png
7
Ele Window Tools Help

=2 @ an

HDFView 2.

Recent Files

mdouglass/src/bstore_test filesftest_experiment/test_experiment_db.| v | Clear Text
test_experiment_db.hs

@l HeLal_Control
¢ @l Helal_Control 1
@ Localzations_ChannelA647_Pos0

o €4 Widefieldimage_ChannelAg47_Pos0
@4 Hetas_Control

(Log Info_| Metadata

_images/gui_screenshot_2.png
Create a new HDF Datastore +

Directary containing input data fles

hame/kmdouglasssrc/bstare_test_files/parsers_test_flles/SimpleParser Browse

Select dataset types and their carrespanding files

I AverageFiducial [<sufte<fle_sdension=
I FiducialTracks [<suffwe<fle_sension=
© Localizaions | csv

© LocMetadata b

© Widefieldinage [l

Select the types of datasets to include and specify the corresponding naming

Select and configure the filename parser
 PositionParser
 SimpleParser

Miscellaneous build options-

sep':), eadTiTags - False Help

Path and filename for the new datastore-

/hame/kmdouglass/src/bstare_test_files/parsers_test_files/SimpleParser/atastore.t Browse

Build

template.html

 Navigation

 		
 index

 		
 modules |

 		B-Store 1.1.1 documentation »

TITLE

		Author:		Kyle M. Douglass

		Contact:		kyle.m.douglass@gmail.com

		organization:		École Polytechnique Fédérale de Lausanne (EPFL)

		status:		in progress

		date:		2016-07-10

		abstract:		XXX

Table of Contents

		TITLE
		Title

Title

 © Copyright 2016-2017, Kyle M. Douglass.
 Created using Sphinx 1.3.5.

_images/dataset_logic.png
|_ S B I -1

Tabulated | Acquision | | Widefield | | Etc. |
localization data | metadata | | images | | |
l___T_ | 1= T [1 T |

Parser
Assigns dataset IDs based on a file's filename.

i

Reader
Reads the data from a file into memory.

Dataset

Acquisition ID

Dataset type
Localization data
Metadata
Widefield image
Etc.

Attribute

Dataset Dataset

Acquisition ID Acquisition ID

Dataset type Dataset type

Attribute Attribute

Optional ID's Optional ID's

_images/database_example_2.png
HDFView 2. X

Ele Window Tools Help

2 ¢am

Recent Files |lhome/kmdouglass/src/bstore test files/test_experimentitest_experiment_db.hs

test_experiment_db.hS ableView - table - /Helal_Control/HeLal_Control_1/Localizations_ChannelA647_Pos0/ - fhome/kmdouglass/src/bstor.

=

4 @ HeLal_Control

¢ @ HeLal_Control_1

¢ @ Localzations_ChannelA647_Pos0

F table x uncertaint,

intensity

loglkelih,

4386.6

425.92

o €2 Widefieldimage_ChannelA647_Pos0 6770.0 9.5138

83103

610.47

7956.1 6.7329
€4 HeLas_Control 7840.8 21087

15671.0

16914

8090.2 7.6282

6952.3

506.19

2010.3 6.5814

8408.1

821.24

0163.2 25165

13696.0

1307.2

9821.6 61704

8527.4

603.25

9899.9 10.883

31078

243.08

08333 65072

82475

643.07

10203.0 61123

8569.2

732.65

10350.0 L0787

35038.0

12727.0

v | clear Text

Localizations_ChannelA647_Pos0 (3408, 2)

Group size

Number of attributes = 68
CLASS = GROUP
SMLM_Metadata_BackgroundThreshold_scMOS = 75
SMLM_Metadata_BitDepth = 16
SMLM_Metadata_BoxSize_sCMOS
SMLM_Metadata_ChColors = -1
SMLM_Metadata_ChContrastMax = 65536
SMLM_Metadata_ChContrastMin = 0
SMLM_Metadata_ChiNames = "Default”
SMLM_Metadata_Channels = 1
SMLM_Metadata_Computerhame

7

lebpc27"

SMLM_Metadata_Customintervals_ms = (1
2

SMLM_Metadata_Depth
SMLM_Metadata Director 112016-03-15_Telomeres\iHeLal_Control A647_Good\image_Stacks"
SMLM_Metadata FitType_SCMOS = 2

SMLM_Metadata_Frames = 20000

<

Log Info | Metadata

_images/gui_screenshot_1.png
Create a new HDF Datastore +

Directary containing input data fles

Enter the directory cantaining the input files Browse

Select dataset types and their carrespanding files

v AverageFiducial | <sui><fle_extension>
@ FiducialTracks | <suffi><fle_extension>
[Localizations | <suffi=<fle_extension>
[LocMetadata | <suffi=<fle_extension>
[Widefleldimage | <suffi><fle_extension>

Select the types of datasets to include and specify the corresponding naming

Select and configure the filename parser
 PositionParser
 SimpleParser

Miscellaneous build options-

sep':), eadTiTags - False Help

Path and filename for the new datastore-

Enter a path to a new datastare fle. Browse

Build

modules.html

 Navigation

 		
 index

 		
 modules |

 		B-Store 1.1.1 documentation »

bstore

		bstore package
		Submodules

		bstore.batch module

		bstore.config module

		bstore.database module

		bstore.multiprocessors module

		bstore.parsers module

		bstore.processors module

		Module contents

		setup module

 © Copyright 2016-2017, Kyle M. Douglass.
 Created using Sphinx 1.3.5.

setup.html

 Navigation

 		
 index

 		
 modules |

 		B-Store 1.1.1 documentation »

setup module

 © Copyright 2016-2017, Kyle M. Douglass.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		
 modules |

 		B-Store 1.1.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016-2017, Kyle M. Douglass.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

